# NAME

cacosh, cacoshf, cacoshl - complex arc hyperbolic cosine

# SYNOPSIS

#include <complex.h>
double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

# DESCRIPTION

These functions calculate the complex arc hyperbolic cosine of z. If y = cacosh(z), then z = ccosh(y). The imaginary part of y is chosen in the interval [-pi,pi]. The real part of y is chosen nonnegative.
One has:
``` cacosh(z) = 2 * clog(csqrt((z + 1) / 2) + csqrt((z - 1) / 2))
```

# VERSIONS

These functions first appeared in glibc in version 2.1.

# ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
 Interface Attribute Value cacosh (), cacoshf (), cacoshl () Thread safety MT-Safe

# CONFORMING TO

C99, POSIX.1-2001, POSIX.1-2008.

# EXAMPLE

```/* Link with "-lm" */

#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{ double complex z, c, f;
if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); }
z = atof(argv[1]) + atof(argv[2]) * I;
c = cacosh(z); printf("cacosh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 2 * clog(csqrt((z + 1)/2) + csqrt((z - 1)/2)); printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS);
}
```

acosh(3), cabs(3), ccosh(3), cimag(3), complex(7)

Source
Linux kernel
OS/version
Source updated
April 19, 2015
Page created
February 9, 2018
Page generated
December 2, 2018